string search of concept_name in omop concepts table
super short name func to search concepts by concept_name
Usage
omop_names(
findstring,
ignore_case = TRUE,
exact = FALSE,
fixed = FALSE,
c_ids = NULL,
d_ids = NULL,
v_ids = NULL,
cc_ids = NULL,
standard = NULL,
messages = TRUE
)
onames(
findstring,
ignore_case = TRUE,
exact = FALSE,
fixed = FALSE,
c_ids = NULL,
d_ids = NULL,
v_ids = NULL,
cc_ids = NULL,
standard = NULL,
messages = TRUE
)
Arguments
- findstring
to search for or regex, e.g. "^a" to find those starting with A
- ignore_case
ignore case in string comparison, default TRUE
- exact
TRUE for exact string search, "start" for exact start, "end" for exact end, default=FALSE for str_detect
- fixed
default FALSE allows regex,TRUE uses grepl exact matching
- c_ids
one or more concept_id to filter by, default NULL for all
- d_ids
one or more domain_id to filter by, default NULL for all
- v_ids
one or more vocabulary_id to filter by, default NULL for all
- cc_ids
one or more concept_class_id to filter by, default NULL for all
- standard
one or more standard_concept to filter by, default NULL for all, S,C
- messages
whether to print info messages, default=TRUE
Examples
omop_names("AJCC/UICC Stage")
#> returning 36 concepts
#> # A tibble: 36 × 10
#> concept_id concept_name domain_id vocabulary_id concept_class_id
#> <int> <chr> <chr> <chr> <chr>
#> 1 1633754 AJCC/UICC Stage 0 Measurement Cancer Modifier Staging/Grading
#> 2 1635410 AJCC/UICC Stage 0a Measurement Cancer Modifier Staging/Grading
#> 3 1634049 AJCC/UICC Stage 0is Measurement Cancer Modifier Staging/Grading
#> 4 1633306 AJCC/UICC Stage 1 Measurement Cancer Modifier Staging/Grading
#> 5 1635790 AJCC/UICC Stage 1A Measurement Cancer Modifier Staging/Grading
#> 6 1633565 AJCC/UICC Stage 1A1 Measurement Cancer Modifier Staging/Grading
#> 7 1635611 AJCC/UICC Stage 1A2 Measurement Cancer Modifier Staging/Grading
#> 8 1634353 AJCC/UICC Stage 1A3 Measurement Cancer Modifier Staging/Grading
#> 9 1634494 AJCC/UICC Stage 1B Measurement Cancer Modifier Staging/Grading
#> 10 1634019 AJCC/UICC Stage 1B1 Measurement Cancer Modifier Staging/Grading
#> # ℹ 26 more rows
#> # ℹ 5 more variables: standard_concept <chr>, concept_code <chr>,
#> # valid_start_date <date>, valid_end_date <date>, invalid_reason <chr>
#omop_names("chemotherapy", v_ids="LOINC")
#omop_names("chemotherapy", v_ids=c("LOINC","SNOMED"), d_ids=c("Observation","Procedure"))
#set the findstring to "" to get all rows satisfying the other conditions
#omop_names("", v_ids="Gender")
#omop_names("", d_ids="Type Concept", standard="S")
#exact= options
#t1 <- onames("tobacco")
#returning 616 concepts
#t2 <- onames("tobacco",exact=TRUE)
#returning 2 concepts
#t3 <- onames("tobacco",exact="start")
#returning 229 concepts
#t4 <- onames("tobacco",exact="end")
#returning 54 concepts
# onames("chemotherapy", v_ids="LOINC")
# because of R argument matching, you can just use the first unique letters of
# arguments e.g. v for v_ids, cc for cc_ids
# to get all clinical drugs starting with A
onames("^a", d="DRUG", v="SNOMED", cc="Clinical Drug")
#> returning 1168 concepts
#> # A tibble: 1,168 × 10
#> concept_id concept_name domain_id vocabulary_id concept_class_id
#> <int> <chr> <chr> <chr> <chr>
#> 1 37151230 Azithromycin 20 mg/mL or… Drug SNOMED Clinical Drug
#> 2 37151437 Alprazolam 1 mg prolonge… Drug SNOMED Clinical Drug
#> 3 37151438 Alprazolam 500 microgram… Drug SNOMED Clinical Drug
#> 4 37151439 Alprazolam 250 microgram… Drug SNOMED Clinical Drug
#> 5 37151466 Aztreonam (as aztreonam … Drug SNOMED Clinical Drug
#> 6 37151561 Amitriptyline (as amitri… Drug SNOMED Clinical Drug
#> 7 37151626 Ampicillin (as ampicilli… Drug SNOMED Clinical Drug
#> 8 37151790 Acyclovir 50 mg/g and hy… Drug SNOMED Clinical Drug
#> 9 37151862 Azithromycin 10 mg/mL ey… Drug SNOMED Clinical Drug
#> 10 37151871 Ampicillin (as ampicilli… Drug SNOMED Clinical Drug
#> # ℹ 1,158 more rows
#> # ℹ 5 more variables: standard_concept <chr>, concept_code <chr>,
#> # valid_start_date <date>, valid_end_date <date>, invalid_reason <chr>
# to get all 'chop' cancer regimens
#chops <- onames("chop", d="Regimen")