filter omop concepts by standard attributes
Source:R/omop_filter_concepts.R
omop_filter_concepts.Rd
Works on a dataframe or an arrow object. Can filter by one or more of : concept_id, domain_id, vocabulary_id, concept_class_id, standard_concept used by other functions
Usage
omop_filter_concepts(
df,
c_ids = NULL,
d_ids = NULL,
v_ids = NULL,
cc_ids = NULL,
standard = NULL
)
Arguments
- df
dataframe with standard omop concept table columns
- c_ids
one or more concept_id to filter by, default NULL for all
- d_ids
one or more domain_id to filter by, default NULL for all
- v_ids
one or more vocabulary_id to filter by, default NULL for all
- cc_ids
one or more concept_class_id to filter by, default NULL for all
- standard
one or more standard_concept to filter by, default NULL for all, S,C
Examples
omop_concept() |>
omop_filter_concepts(d_ids=c("measurement","drug"),v_ids="SNOMED") |>
dplyr::collect() |>
dplyr::count(domain_id,vocabulary_id)
#> # A tibble: 2 × 3
#> domain_id vocabulary_id n
#> <chr> <chr> <int>
#> 1 Drug SNOMED 254167
#> 2 Measurement SNOMED 39066
omop_concept() |> omop_filter_concepts(v_ids="Gender") |> dplyr::collect()
#> # A tibble: 5 × 10
#> concept_id concept_name domain_id vocabulary_id concept_class_id
#> <int> <chr> <chr> <chr> <chr>
#> 1 8570 AMBIGUOUS Gender Gender Gender
#> 2 8532 FEMALE Gender Gender Gender
#> 3 8507 MALE Gender Gender Gender
#> 4 8521 OTHER Gender Gender Gender
#> 5 8551 UNKNOWN Gender Gender Gender
#> # ℹ 5 more variables: standard_concept <chr>, concept_code <chr>,
#> # valid_start_date <date>, valid_end_date <date>, invalid_reason <chr>